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Computation of the Parallel-Plate Capacitor
with Symmetrically Placed Unequal Plates

WEIGAN LIN

Abstract —The classicaf problem of the paraflel-plate capacitor has been

investigated by a number of authors, including Love [1] and Langton [2];

the latter gives good results that are still not complete as claimed [2]. In
this paper, the constantsOccurnng in the Schwarz-Cbristoffel equations

are correctly related to the dimensions of the capacitor. The electric

intensity is studied and four typicaf vafues are given afong the central line

of force in the general case of the parallel-plate capacitor with symmetri-

cally placed unequaf plates. For the symmetrical case of an equaf plate, the

complete field distribution is given by constructing the family of lines of

force.

I. INTRODUCTION

T HE PROBLEM OF a parallel-plate capacitor with

symmetrically placed unequal plates has a history of

more than sixty years. Love [1] uses the standard procedure

of conformal transformation to solve this problem, and

Langton [2] has, in an excellent recent paper, attempted to

give it a complete solution. Indeed, Langton has given

good results useful for practical applications and yet his

solution is still not complete and some of his remarks are

not strictly correct.

II. THE PROBLEM

As shown in Fig. 1, the capacitor under study is of the

parallel-plate type with symmetrically placed unequal plates

(in this figure and in subsequent figures, we use solid lines

to represent electrodes and dotted lines to represent flux

lines). In Fig. 2, we take- half of the whole field on the

upper half of the z-plane to be investigated. Love and then

Langton gave the following expression of the

Schwaz–Christoffel equation to transform the boundaries

in the z-plane into those in the z ‘-plane (Fig. 3)

dz P(z’– C{)(z’– Cj)—

dz’ - ~(z-x;)(z-x; )(z-x~)(z-xj) ‘la)

where P is a constant to be determined.

In the z’-plane, the electrodes AC and EG are not of the

same width. A second bilinear transformation

A
z’=z; +~ (lb)

will transform the boundaries in the z ‘-plane into those in

the t-plane with electrodes of the same width (Fig. 4). The
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Fig. 1. The capacitor.
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Fig. 2. The complex z-plane.

Fig. 3. The z’-plane.

real axis of the t-plane is folded to form a uniform field

problem in the ~-plane by the following transformation

(see Fig. 5):

t=sn(to, ~) (lC)

where k is used in Fig. 4 such that I/k is the distance OA.

In the u-plane, we may write out the uniform field by a

complex potential W = U + jV and

W=; (J (2)

so that two electrodes are at + 1 V and – 1 V, where K is

the complete elliptic integral of the first kind of modulous

k

K= K(k). (3)

The capacitance per unit length of the parallel-plate

capacitor of Fig. 5 with a uniform field inside is

~,=c~

2K
(4a)

where ~ is the permittivit y of the medium. By the principle

of conservation of capacitance of the capacitor in confor-

mal transformations, the capacitance per unit length of the
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Fig. 5. The u-plane, a = &+ j~.

capacitor shown in Fig. 1 is just twice the value of (4a)

~=2c, =cg

K
(4b)

and the field distribution inside and around the capacitor

of Fig. 1 can be mapped by the potential lines and the flux

lines given by (2)

W=u(x, y)+jv(x, y)=+u(z)

and we take U(x, y) as the potential function, while V(x, y)

is then the flux function.

The problem remaining to be solved now is how we are

going to relate the dimensions a, b, and h in Fig. 1 to the

parameter k of (3), which again appears in (2) and (4b)

implicitly.

Langton [2] obtains the parameter k by first prescribing

the a’, b’, and h’ of Fig. 3, where

a~=x,j-x~

b’=X; –X;

h’=X~– X;

then gives k as the root less than 1 of the following

equation:

(k2–2k 1+
2a’b’

)
+1=0.

h’(a’+ b’+ h’)
(5a)

Having found k from (5a), the points Cl and Cz in Fig. 4

can be solved from the following relations, which are

obtained from Love’s results [1] by Langton [2]:

C +C =_v2E’–(l+k2)K~12
Ef–k2v2K/

(5b)

.

prescribing a’, b’, and h’ as follows:

801

h’– h’k +Zb’~=
2b’k – h’ + h’k

h’k –2a’– h’

= 2a’k– h’+ h’k “
(fid)

Langton determines the constants in the transformation

from the z-plane of Fig. 2 to the u-plane of Fig. 5 to give

However, Langton did not relate the lengths a’, b’, and h‘

to the actual dimensions of Fig. 1 and instead said erro-

neously that since the transformation from the z- to the
z ‘-plane is conformid, then a/a’= b/b’ [2, eq. (23)], and

furthermore implied in his example that a/a’= b/b’=

h/h’, which is also not strictly correct.

We are now to do the work of relating the parameters

X(, X;, Xi, and Xi to a, b, and h to complete this

problem of the parallel-plate capacitor with symmetrically

placed unequal plates.

III. THE INTEGRATION OF (1)

Langton [2] remarked that (1) cannot be integrated. This

is not true. In fact, (1) can be integrated by [3, eqs. 250].

Now we proceed to integrate (1) to relate the constants xl,

xi, xi, and xj to the dimensions of the capacitor a, b, and

h of Figs. 1 and 2. To make use of [3, eqs. 252.11 and

253.11], we put (la) into the following form (where j
.~):

dz j(z’–c{)(z’–c~)

z=– ‘~(x~-z’)(x;- z’)(x; -z’)(z’ - X()

(6)

Integrating both sides from points A to C of Figs. 2 and

3, we have

Z’2-(C{+C4)Z’+C{C;
o= - jq~~

x ((x&z’) (x&z’) (x;-z’)(z’-x{j-”

(6a)

We then have one equation relating (Cl+ C2) and C~C~.

The integrals in (6a) are the same as those to follow in (7)

and will be evaluated there.

To make use of point B, [3, eq. 253]

[[
M

x; x; C;C; –(C{+C; )Z’+Z’2
Z=–jp – dz’

Y x {(x& z’)(x:- z’)(x;-z’)(z’ - x{) )]

cc= E’V2–K~
1 2 E1_v2k2Kt

(5C) ‘or

(7)

provided v is known. One form of this constant v in the so that z = O when z’= y = X(. The integral (7) will be

bilinear transformation (lb) is given by Langton [2] by given in terms of (from [3, eq. 253.11], m is the power c)f z’
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in the numerator of (7))

where

zo=u=F(cp, k)=vo

21= +[(d – a’z)vl+ (X’2VO]

22= + [CY’4V0+2a’2(a2 – a’z)vl + (az – a’2)??2]

v1=7r(cp, a2, k)

V2=
1

2(a2–l)(k2–a2)

“[
a2E(u)+ (k2–a2)u +(2a2k2+2a2 –a4–3k2)v1

a4sn ucn udn u.
1– ff2sn2u I

and

‘= /(x& X;;(x;- x;)

~,= (xi- xx%-%’)
(x:- x;)(x;- x{)

k2<a2=x~–x&
Xi – Xl’

f+=~mu=~in-l m
At point B of Figs. 2 and 3

z=ja zj=~;

(9)

(lo)

snu=sinrj

(11)

and from (11), for y = Xi, sin+= snu =1; therefore

u=K q=T/2

and we write

{

(x;- X()(x;- co ~12)
+3= amU3 = sin-l

(x; -x{)(x;- c{)

and add a subscript to the quantities in (10) to signify that

[3, eqs. 253] have been used. Equation (7) then goes into

[{
a= –gp C[Cj Zo/@3,~3>k3)–Zo(;)~3>k3

)}

-(c{+c;)x;{z,(+,,~q>kq)

{ (= )}]+X;2 z2(03, a3,kJ-.z2 pdq

where 2., Zl, and 22 are given in (9) when +, a, and k

have been written as @3, as, and k3 and are the same as

(12). More explicitly, we write out

[
a=gP C{C~(u3– k3)–(C~+ C~)(–h’V1(@3, a3, k3)

+~’v,(;,~3>k3)+x;(~3-k,))+{x;2(u-k3)

(+h’2v2(@3, a3, k3)–h’2vz ;Yaq>ks )}1 (13)

where we have adopted the notation of Langton

h’=X; –X;

at=x~–x{

b~ = XJ–.– x(. (14)

We also write the complete elliptic integral of the first kind

as

K3=K(k3)

and gP is a constant to be evaluated. Vo, VI, and V2 can be

found from (9).

To integrate from points C to E of Figs. 2 and 3, we

take [3, eq. 254] and put (la) into the following form:

(z’-c{)(z’- c;)
dz=P

I(x:-z’)(x<- Z’)(z’ - Xj)(z’ - x{) ‘z’”

Integrating, we find

J

Z’2 -( C{+ C;) Z’+ C(C;
2h=P ‘;

% /(x: -z’)(x;-z’)( z’- Xj)(z’ -x{) “

(15)

Next, we integrate from points E to G; by [3, eq. 256]

we have again, from (lb)

(16)

so that we have another equation relating C;+ C; and

C;c;.
At the point F of Figs. 1 and 2, we make use of [3, eq.

257.11], and write

[{
LI

Z’Z-(c; + C;)z’+ C(c<
z=–jP ‘i– ‘;

Y
1% /(x J-z’) (z’- X:)(z’-x;)(z- x{) ‘z’ ‘2h

(17)
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so that when z = 2h + jO, z’= y = Xj’, then y = C~ gives ~d

z=2h+jb. z:=jb+2h a=– K+ju t=C2. (20b)

We have from (17) So by (lc) we have
.—

[( Z’2 -(q+ q)z’+c;c;
b=-P &~xi

)]Z {(x& ,’)(,’ - x~)(z’ - x~)(z’ - x{) “

(18)

Then, proceeding as we have done from (7) to (13), we

write

k:=
(a’+ bf~;’+ h’)

X{ b’
a;2= —-—

X; b’+ h’

/(a’+h’ Xj–C~
47=mu7=sti”~ _

b’ c; – x{ )

x{<x; <x; <y<x~,
+T = f7/2 for y = Xi K7=K(k7) = KS.

Then (1$) gives

[
b= –gP C{C;(UT –K)–(C[+ C;){(a’+b’+ h’)

.V1(@7, a7, k2)

-(a’+ b’+h’)vl(;a,kz)

)(
+ X((UT– K) + X;2(U7– K)

+2(a’+b’+ h’)

(
.X; V1(@7, a7, k~)–2(a’+ b’+ A’)X{VI ;,a,, k~

)

+(h’+a’+ b’)2V2(Q7, a7, k~)

-(h’+ a’+b’)V2(@,,a,, k,)]]. (19)

Now we have two equations (6b) and (16) to solve for

C(C; and C:+ C;, one equation (15) to solve for the

constant P, and (13) and (19) determine the values a/h

and b/h completely.

IV. CAPACITOR PLATE DIMENSIONS FROM THE

SECOND INTEGRATION OF (1)

Actually, (1) has been integrated by Love [1, eq. (5e)],

from which the dimensions of the capacitor of Fig. 1 can

be correctly determined as follows.

From Figs. 2 yd 5, at points B and F, we have,

respectively,

z=ja u= K+jv t=C1 (20a)

Cl=sn(K+ jo, k)=dn(v, k’). (2@

By [3, eq. 125.0], recalling cnK = O and dnK = k’, and by

(lc) again we have

C2=–dn(u, k’). (20d)

Putting (20a) and (20b) into (5e)

a 2K’

(
Z(v, k’)- k’2v

cn(v, k’)sn(v, k’)

%=7 1+ vdn(v, k’) }

(21fi)

b 2K’

(
– = ~– Z(u, k’)+ k’2v

cn(u, k’)sn(u, k’)

h )l–vcln(u, k’) “

(m)

We thus have related prescribed parameters a’, b’, and h’

of Figs. 3 to the capacitor dimensions a, b, and h, since k

is then given by (5a) and v by (5b), w~le (20c) and (2&l)

will yield v and u.

From (21a) and (21b), we can find the ratio of plate

widths

k’2vcn(v, k’)sn(u, k’)
z(u, k’)–

a l+vdn(u, k’)
—.
b k’2vcn(u, k’)sn(u, k’)

Z(U, k’)–
1– tidn(u, k’)

where

dn(u, k’)== –~ dn(v, k’)= ++
2 1

sn(u, k’)’= ~
/( )

l–~
c:

r

(1-k2C:)
cn(u, k’) =

C2k’

(21C)

/( )sn(v, k’)=~ I–-&
1

r(l-k’C;)
cn(v, k’)= O< V< K’, O< U< K’.

Clk’ ‘

According to [2, eq. (23)], we would have, instead of (21.c)

a a’ (kv+l)(v+l)—=— .
b b~ (kv-l)(v -1)
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Fig. 6. The z’ parameters.

which is not true, as demonstrated by the numerical exam-

ple below.

For the prescribed a/h and b/h, we have theoretically

four equations ((5 b), (5c), (21a), and (21 b)) to solve for

four parameters k, v, u, and v so that we have the required

k for (4a). Actually, it is difficult to solve these four

equations given only a/h and b/h, so it is expedient to

start with prescribed a’/h’ and b’/h’ approximately to

give the required ratio of a/b and to proceed further to get

the correct values of a/h and b/h.

Before we give the numei-ical example, we first transform

(5e) into the following form by [3, eq. 140.01]:

(

,=h 2kK’ ~(ti)_K’-E’u+ cnudnu
T K’ snu+v }

(21d)

so that we can make use of some good tables of elliptic

function with complex argument, such as [4]. By putting

the points B and Fforti=K+jv forz=ja and a=

–K+jufor z=2h–jb, we find

Equations (21a) and (21b) give

;
= 0.266003

b

z
= 0.524377.

Therefore

; = 1.97132

which is not 2 as was supposed by Langton [2]; moreover,

the ratios a/h and b/h are far from 0.4 and 0.8, respec-

tively.

So we can see that we may start with a prescribed

dimension of the transformed dimensions such as those in

Fig. 6, and then work out k and u by (5a) and (5b), to be

inserted in 21(a) and (21b) to find a/h and b/h and then

a/b by (21c).

V. THE ELECTRIC INTENSITY DISTRIBUTION

For industrial heating applications and in antenna work,

we wish to know the electric-field intensity distribution

inside the capacitor and in its neighborhood. From the

;= {( )- ~ (K’-Ef) K,~E, - ~ -k’ ‘n(u’k’)(cn(u’ k’)
dm(u, k’){l–vdn(u, k’)} )

(21e)

b

(( )
~ (K’- E’) ‘i -$ +kf’

sn(u, k’)cn(u, k’)

z=– K’– E’ dn(u, k’){l–vdn(u, k’)} }
(21f)

so that when v ~ co as a + b, only one term remains on complex potential W of (2), we have

the right-hand sides of (21e and f). dW dW r9U
To demonstrate now that a/b has to be worked out, — — —+j~=~– j~=– EX+jEY

dz=dx =8x dy
afid not simply being given by a ‘/b’, we will work on the (22a)
example in Langton’s paper [2]. The z‘ parameters are or

prescribed in Fig. 6, so 1

dW dw F
–EX-?-jEY=%Z=X. (22b)

a~=2

h’=5
dw

b~=4 dz/dw is given by operating on Love’s result quoted in (5e)

to obtain
and (5a) gives

k = 0.475
dz

‘( E’-k’v’K’) ‘t-;;(:; c’) ,
dw=–r

and (5b) gives

V=9. t=sn(u, k). (22c)

From (20c) and (20d), we find that Consequently, we can write

u = 1.19043 U. 77
–EX+jEY=TZ

(t +V)2
U =1.25153

E’-:2V2K’ (t-c, )(t-c’)

and then
(23a)

Z(U, k’)= 0.256141
for a potential difference of 2V0 between the capacitor

Z(U, k’)= 0.248735. plates of Fig. 1.
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Along the center line CE of Fig. 1, t is real while for t = O, (23a) gives

–l<t<l.
‘R
-x

For heating applications, we wish to obtain as nearly a

uniform electric-field intensity distribution as possible, so

we want the following four values of IE I = I– EX + jEYl as

nearly equal as possible at t =1, O,– 1 and at t for which

dlEl_o

dt

which gives

~= 2C1C2+V(C1+C2)

C1+C2+2V “

By (5b) and (5c), this is the same as

(l+k’)v’-2 1
t=

l+k2–2k2v2~”

(23b)

(23c)

(23d)

At this value of t,the value IE I is a minimum

IEfinl = y% .

(V2-l)(k2V2-l)K’

4.E’K’(1-V2)(1– K2V2)+V2K’2(1– k2)2

U. 77
. .—

h 2KE’
l-~”

(25,:)

v2Ef

We have found the field intensities at four points, C, E,

their midpoint, and another point given ,by (23d). 13y

choosing the appropriate k and u from their permissible

sets of k and u obtained from solutions of (5 b), (5c), and

(5d), we can obtain a nearly uniform field intensity distrib-

ution along the whole CE of Fig. 1 or a better distribu-

tion over a portion of the line segment CE.

To study the electric-field intensity inside and outside

the capacitor, we make use of the fact that the equipoten-

tials and the flux lines between the electrodes of Fig. 1

have been transformed into vertical and horizontal lines in

the uniform field in the u-plane of Fig. 5 and (2) and (5e).

Thus, for U.= 1 V, we have

U(X>y) = + (26a)

U. T 1— V(X> y) = -#:—— (26b)—
h 2KEr V2 K, (~-k’)2 “

1+~~ (V2–1)(1– v2k2) so that the total flux passing through a line joining any two

points in the field of Fig. 1 equals the product of the
(24a) permittivity c by the difference in the value of the stream

To obtain a uniform field intensity along the center line function V at the two points [5]. The potential function U

CE, we wish to make (24a) as nearly equal to IEI at representing the equipotentials and the stream function V

t = +1; O as possible, where, at t = +1, we have representing the lines of force are both straight lines, so for

“Ir V(L y)= VI, (26b) gives

t=–-’l: IE,I = ~ 2KE’

l_~ (l–v)(l–vk’)

~=Kl ‘1

K ‘/K

E’ (V+1)2 and along this line of force V(x, y)= VI

(24b)

and

‘n

t=l: 1E21= ~ 2KE’

1_g(l+v)(vk2+l)

(24c)

E’ (v-l)’

where C1C2 and Cl+ C2 are given by solving (5b) and (5c),

so we obtain

T

VI
u=~+j —K’.

K ‘/K
(26c)

On substituting this u into (5e), we obtain an equation of a

line of force in Fig. 1 with & as the parameter as & changes

from – K to K.

Since the completely symmetrical case of a = b in Fig. 1

has received more attention than the more general case, we

will give more details on this case in the following section.

VI. THE SYMMETRICAL CASE OF A CAPACITOR OF

EQUAL PLATES
-

lE,l = ~ 2KE’
1- ‘2kKyE’ (25a)

For the case a = b in Fig. 1, (21a) and (21b) are the

~+ ~ vk2–1 l–v2k2K’/E’ same provided v ~ ce. Then (5e) goes into

E’ v—1

[
z=h-~ Z(w): ‘* 1 (27a)

T T 2KK’

IE21= + 2KE’
1- ‘2kKyE’ (25b) ‘r

K’ vk2+~ ~–v2k2K’/E’
l+——

[
z=h-~ E(U) _K’-E’u 1 (2710)

EJ V+l r K’
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from (21d) for v ~ m. From Fig. 4, u = K + jV, z = ja,

(27a) gives, by [3, eq. 143.01]

a + 2K’

[

Z(u, k’)–k’z
sn(z7, k’)cn(o, k’)—.—

h %’ dn(u, k’) 1
(28a)

while (27b) yields

a E,(v, k)
—=_
h

~(K’-E’)( ~,_E, - K,
}

3 (28b)

by the known relations [3, eq. 110.10] [4, pt. IV])

E(K+ju, k)= E(k)+ jEi(u, k)

and

EK’+E’K– KK’=w/2.

The values Cl and Cz of Fig. 4 will become

(28c)

So the electric-field intensity will be given by (23a) as

which has the minimum value

(28d)

(28e)

for

t=sn(u, k)=O

and

IEll =
1%,231

(28f)
l–k2K’/E’

by (25a). Now the value of u or u in Fig. 4 is

sn(K+jv)=C

so

(28g)

by (28c). With all this information, we can easily transform

the field in the o-plane (26a) and (26b) back to the z-plane

for a = b by means of (27a) or (27b). In Table I, given such

a transformation, we take (27b) and rewrite it as follows:

z z—h

~=– h

—— (~ Er($, q)+ jEi(&, q)– “~,E’~- jK’~,E’q
)

{

_ 2K’E Er(~, q) _ K’– E’ ~~—
’77 E K’ EK }

+j2K’(K’– E’) Ei(f, q) ~

T ( Kl_E1– K1 1

(29)

The quantities K, K’, E, E’, E;= Er(~, q)/E, Ei’ =

Ei(~, q)/(K’ – E’) can be read from [3, pt. IV]. An exam-

ple is shown in Fig. 7, indicating that the boundary line of

TABLE I
LOCI OFTHELIm OF FORCE

x/h 0 .2696 .5066 .6497 8232 .9585 .9852 .9974 .5552 1.0000

.YIh 1.3867 1.3b62 1.2492 1.1186 :9771 .7161 .6480 .5868 .5506 .5386

n = 0.5K’

dh 0 .2967 .5309 .7218 .8533 .9811 1.002511 .0088 ]1.0063 [1.0000

ylh 1.4433 1.L057 1.2996 1.1582 1.0056 .7473 .6560[ .5917] .55391 .5612

n . 0.7KV

xlh .8253 1.0474 1.1531 1.1723 1.1392 1.0962 1.0489 1.0000
y/h 2.0:01 1 :$;+: 1.6930 1.4101 1.1427 .9769 .6376 .5585 .5134 .4988

xlh .9520 1.696b 1.6567 1.62L7 1.k687 1.2967 1.1922 1.0943 1.0000

ylh 3.1!08 2.8202 2.2036 1.5869 1.1471 .6320 .5238 .I+IJ65 .4020 .3881

n - 0.9K’

xfh 0 2.9305 3.1203 2.6495 2.2124 1.5300 1.4337 1.2714 1.1307 1.0000

ylh 6.3366 4.8182 2.3339 1.3107 .8067 .5419 .3912 .2498 .2232 .2130

n = O.lK,

Xlh 0 .1243 .2323 .3463 .5147 .3407 .7430 .8312 .9162 1.0000
ylh .1793 .1781 .1734 .1686 .1619 .1468 .1401 .1350 .1320 .1308

n = 0.2KS

dY .1306 .2&39 .3600 .4696 .6681 .7576 .8416 .9215 1.0000

ylh .3:49 .3606 .3536 .3408 .3249 .2913 .2770 .2651 .258& .2559

q = 0.3K,

xl h 0.1430 .2673 .3914 . 505h .7012 .7848 .8608 .9315 1.0000
yfh .5:49 .5594 .5438 .5201 .4911 .4199 .4059 .3859 .3737 .3700

Xlh .1661 .3098 .4473 .5678 .7571 .8300 .8924 .9478 1.0000
ylh .7!24 .7824 .7539 .7117 .6615 .5607 .5193 .4885 .4692 .4628

n m 0.5K’

xlh 0 .0208 .3866 .5428 .8171 .8460 .9002 .9405 .9723 1.0000

ylh 1.0693 1.0510 0.9986 .9923 .8355 .6717 .6085 .5621 .5340 .5245

BOu23dq line: q = VI, V/K’= 0.58324, k = sin20°, a/h = 0.5386.

force originating from the tip of one of the capacitor plates

and entering orthogonally onto the ground plane x = O, for

the case of a/h = 0.5386 when k = sin20° = 0.34202, with

v/K’ = 0.5832. In this manner, we can construct the com-

plete families of the equipotentials and the lines of force in

the transverse section of the two-dimensional capacitor.

In Table II, we tabulate some of the important data of

the symmetrical parallel-plate capacitor: l/C, which ap-

pears in (28d); the field IE I is more uniform the smaller

l/C is in the neighborhood of a = O. This is the useful

region for industrial heating applications. v/K’: the value

of total flux bounded by the stream function through the

tip of the plate of the capacitor, this is the fraction of the

total flux under one half of the capacitor plate, so 1 – u/k’

is the amount of flux originating from the upper side plate.

z~ /h is the height where the boundary line of force meets

the ground plane: it is a measure of the degree of confine-
ment of the field by the capacitor plates, and its value is

found by putting o = O+ jv into (27a) or (27b)

z–h 2K’

{
— Z(U> k’)–

k’2cn(u, k’)sn(u, k’)zb=— _
h=n dn(o, k’) )

(30a)
by [3, eq. 143.01], or

z,=+[,KI-E,(E,,O,U,-+)] (sob,

by [4, pt. IV]. The last two columns are from (28e) and

(28f) to show the uniformity of the field intensity in the

neighborhood of the midpoint of the inner side of the

plate.
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Fig. 7. A field line plot, a = b.

TABLE II
SYMMETRICALPARALLEL-PLATECAPACITOROFEQUAL WIDTH

I (W I (28s.) I (28a, b) I (30a, b) I (ratio) I (28.) I (28f)

1“ I .04067131 .7322 [ 2.1320 ] 3.004 I 1.4090 1.999171 1.00083

3“ I .1693U I .6674 I 1.2069 I 2.0651 I 1.7111 I .983611 1.01478

10” I .302355 [ .6285 I .8862 I 1.7105 I 1.9301 1.934121 1.05325

15” I .415047 I .6006 I .6769 I 1.4849 I 2.1936 I .913121 1.103154

20” I .511826 I .5832 I .5386 \ 1.3807 I 2.5035 1.819081 1.109812

25”

30”

35”

40”

45”

50”

35”

60”

65”

70”

7s”

80”

85*

89 “

.393243 I .5723 I .43CCI I 1.3168

.667215 I .5604

.729264 I .3432

.782670 [ .5361

.828473 I .3283

.867543 I .5219

.900592 [ .5164

.928204 I .5118

.950852 I .5076

.968909 I .5054

.982659 I .5029

.992346 I .5023

.998094 I .5000

.999924 \ .5000

I

.3205 I 1.2558

.2753 I 1.1889

.2200 [ 1.1478

.1717 I 1.1137

.1233 I 1.0848

.09111[ 1.0643

I

3.0624

3.9185

4.3180

5.2171

6.4867

8.8000

11.6810

I I

I I

I I

-
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I
.769421 1.38679

I
.729241 1.88225

I

.582521 2.35486

I

1.496361 3.885512

1“
.411591 6.72363

I

.31934120 .94413

.26216168 .84&3

.184 0011210 .53

I

Conformal transformations areverv powerful tools for

solving two-dimensional boundary wtiui problems thanks

to the availability of ‘modern computers, because good
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tables of mathematical functions can be obtained to facilit-

ate the numerical computation of results valuable for

practical applications. Classical problems having a history

of many years may find new applications and, therefore,

deserve our critical study. Langton [2] endeavors to give a

complete solution for a capacitor with symmetrically placed

plates of finite unequal breadths. Good results have been

achieved by Langton, but his solution is still not complete.

He stated that equation (1) of his paper cannot be in-

tegrated; actually, it can be done by formulas in Byrd and

Friedman’s celebrated Handbook [3]. Langton misrepre-

sents the prolperty of conformal mapping by his equaticm

(23). This equation should be replaced by (21a), (21b), and

(21c) of this paper. The statement that values of elliptic

integrals for c~rnplex arguments have not been tabulat~d is

not true; we use one of the tables in [4] to calculate the

whole field distribution of the symmetrical parallel-plate

capacitor of equal plates (Fig. 7 of this paper). We will give

more numerical results for practical application in subse-

quent work, as this classical problem of the parallel-plate

capacitor forms the background to modern microstrip an-

tennas in theory and practice [6].

[1]

[2]

[3]

[4]

[5]

[6]
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