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Computation of the Parallel-Plate Capacitor
with Symmetrically Placed Unequal Plates

WEIGAN LIN

Abstract — The classical problem of the parallel-plate capacitor has been
investigated by a number of authors, including Love [1] and Langton [2];
the latter gives good results that are still not complete as claimed [2]. In
this paper, the constants occurring in the Schwarz-Christoffel equations
are correctly related to the dimensions of the capacitor. The electric
intensity is studied and four typical values are given along the central line
of force in the general case of the parallel-plate capacitor with symmetri-
cally placed unequal plates. For the symmetrical case of an equal plate, the
complete field distribution is given by constructing the family of lines of
force.

I. INTRODUCTION

HE PROBLEM OF a parallel-plate capacitor with

symmetrically placed unequal plates has a history of
more than sixty years. Love [1] uses the standard procedure
of conformal transformation to solve this problem, and
Langton [2] has, in an excellent recent paper, attempted to
give it a complete solution. Indeed, Langton has given
good results useful for practical applications and yet his
solution is still not complete and some of his remarks are
not strictly correct.

II. THE PROBLEM

As shown in Fig, 1, the capacitor under study is of the
parallel-plate type with symmetrically placed unequal plates
(in this figure and in subsequent figures, we use solid lines
to represent electrodes and dotted lines to represent flux
lines). In Fig. 2, we take half of the whole field on the
upper half of the z-plane to be investigated. Love and then
Langton gave the following expression of the
Schwarz—Christoffel equation to transform the boundaries
in the z-plane into those in the z’-plane (Fig. 3)

dz _ P(ZI_CI/)(Z/_CZ/) (13.)
dz’ \/(z’ - x{)(z’ - xg)(z’ - x;)(z’ - xg)
where P is a constant to be determined.

In the z’-plane, the electrodes AC and EG are not of the

same width. A second bilinear transformation

z’=26+t+p (1b)

will transform the boundaries in the z’-plane into those in
the r-plane with electrodes of the same width (Fig. 4). The
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Fig. 2. The complex z-plane.
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Fig. 3. The z’-plane.

real axis of the t-plane is folded to form a uniform field
problem in the w-plane by the following transformation
(see Fig. 5):

t=sn(w, k) (1c)

where k is used in Fig. 4 such that 1 /k is the distance OA.
In the w-plane, we may write out the uniform field by a
complex potential W= U + jV and
1

= Ew (2)
so that two electrodes are at +1 V and —1 V, where X is
the complete elliptic integral of the first kind of modulous
k

K =K(k). 3)

The capacitance per unit length of the parallel-plate
capacitor of Fig. 5 with a uniform field inside is

Kl

C'=3x

(42)
where ¢ is the permittivity of the medium. By the principle
of conservation of capacitance of the capacitor in confor-
mal transformations, the capacitance per unit length of the
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Fig. 5. The w-plane, w=§+ jy.

capacitor shown in Fig. 1 is just twice the value of (4a)

=K

C=2C"=¢ %

and the field distribution inside and around the capacitor
of Fig. 1 can be mapped by the potential lines and the flux

lines given by (2)

(4b)

W=U(x, y)+ ¥ (x, ) = gol2)

and we take U(x, y) as the potential function, while V'(x, y)
is then the flux function.

The problem remaining to be solved now is how we are
going to relate the dimensions a, b, and % in Fig. 1 to the
parameter k of (3), which again appears in (2) and (4b)
implicitly.

Langton [2] obtains the parameter k by first prescribing
the a’, b, and &’ of Fig. 3, where

a'= X}~ X{
b=X;- X;
W=X]- Xj

then gives k as the root less than 1 of the following
equation:
2a’b’

k2—2k{1+——————————
W(a'+b +h)

}+1=a (5a)

Having found k from (5a), the points C; and C, in Fig. 4

can be solved from the following relations, which are

obtained from Love’s results [1] by Langton [2]:

2E'—(1+k*)K’
E’'— k*»’K’

C,+C=~—v» (5b)

cicy—(Cl+¢3)z + 272
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prescribing a’, b’, and '’ as follows:
. h'— W'k +2b
2b'k — '+ h'k
h'k—2a’—h (5d)

T 20k WA WK
Langton determines the constants in the transformation
from the z-plane of Fig. 2 to the w-plane of Fig. 5 to give

2hk’ TW cnwdnw .
z—h—-—ﬂ_—{Z(w)+ 2KK’+ snw+v}' (5e)

However, Langton did not relate the lengths a’, b/, and A’
to the actual dimensions of Fig. 1 and instead said erro-
neously that since the transformation from the z- to the
z’-plane is conformal, then a/a’=b/b" [2, eq. (23)], and
furthermore implied in his example that a/a’=b/b"=
h /h’, which is also not strictly correct.

We are now to do the work of relating the parameters
X/, X}, XJ, and X] to a, b, and h to complete this
problem of the parallel-plate capacitor with symmetrically
placed unequal plates.

III. THE INTEGRATION OF (1)

Langton [2] remarked that (1) cannot be integrated. This
is not true. In fact, (1) can be integrated by [3, egs. 250].
Now we proceed to integrate (1) to relate the constants x{,
x5, x4, and x} to the dimensions of the capacitor a, b, and
h of Figs. 1 and 2. To make use of [3, egs. 252.11 and
253.11], we put (la) into the following form (where j
=y—-1):

z __, -z -¢)

' f(xp-2) (%= ) (X5 2N - X)

(6)

Integrating both sides from points 4 to C of Figs. 2 and
3, we have

X 2?2 —(C{+ C3)z'+ C{Cs
X (- 2) (x5 - 2) (x4 - 2/) (2"~ Xx7)
(6a)

We then have one equation relating (C, + C,) and C{C;.
The integrals in (6a) are the same as those to follow in (7)
and will be evaluated there.

To make use of point B, [3, eq. 253]

dz’ (M

z=—jP /yxé_/){(;{ ‘/(Xi

E’v2 — K’

CC=—"t
12 Er_y2k2K/

(5¢)

provided » is known. One form of this constant » in the

-2 )(X5 - 2) (X - ) (2 - X{)

for
X/Sy<Xj<X{<Xj

so that z=0 when z’= y= X]. The integral (7) will be

bilinear transformation (1b) is given by Langton [2] by given in terms of (from [3, eq. 253.11], m is the power of z’
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in the numerator of (7)) [3, eqgs. 253] have been used. Equation (7) then goes into
mf1-— 2sn? " = — [7ali _ (z )
ng,m/- 1( alzsnzu) di= XZ, () a gP [C1C2<ZO/¢3,a3, ky)—2Z, 5% k,
0 \1-a“sn‘u
where -(ci+c)x, <Z1(¢3,a3,k )
T
Zo=u=F((p,k)=Vo _Zl(a—,a3,k3)}
=1(a?— o)V, + a’*V,
(-~ atypir ] + X Za( o, ) 2o 5 s )
Z=_1_[ /4V 2a2(a? — ;2V 2__ .2 V] . .
2T gl o t2a%(a? = &)V +(a — )V, where Z;,, Z,, and Z, are given in (9) when ¢, a, and k
s have been written as ¢,, a5, and k; and are the same as
Vi=n(p,a% k) (12). More explicitly, we write out
V,= L a=gP[C{CZ’(u3-—k3)—(Cl’+CZ’){—h'V1(¢3,a3,k3)

A2 —1)(K* - o)

TRV T as, ks )+ X (= o) +{ XD (s~ k)
-[azE(u)+(k2 —at)u+ (20’ +2a% - a* - 3k2)V,

~ 20XV (5, 00, k) + 20XV T s, )

_a*snucn udnu] ©)
1 asniu BT k)= Tk} (19)
and where we have adopted the notation of Langton
1 W= X]- X}
g= P Y
V(X = 25) (%~ X7) | @=X;
b =X;— Xj. (14)
k2= ( )( ) We also write the complete elliptic integral of the first kind
(X - x3)(X; - x{) as
X! — X7 Ky =K(k;)
kl<a?="2 "1« and gP is a constant to be evaluated. ¥,, ¥;, and V, can be
Xi— X/ found from (9).
X! X! — X7 To integrate from points C to E of Figs. 2 and 3, we
=322 "1 (10) take [3, eq. 254] and put (1a) into the following form:
X; Xi—X{ oo P (z’—Cl’)(z'—-Cz’) a2’
z = Z’.
X{— X, - X' -z X! -2z r— X! r_ X/
¢=cmu=sin"! (X - X{)(X; - ) ,  snu=sing \/( i— ) (X -2)(2 - X3)(2 - Xx7)
(Xz - X/ )( X{— ) Integrating, we find
1) o4 p 2—(c1+¢g)z + Cics .
At point B of Figs. 2 and 3 % \/(X;—z )( 3=z )(Z - Xz’)(z - Xf)
z=ja z'=C({ (15)

Next, we integrate from points E to G; by [3, eq. 256]

and from (11), for y = X{, sin¢ = snu =1; therefore we have again, from (1b)

u=K ¢=mu/2 0=Z (4 22 =(Ci+¢)) 2’ + Clcy
and we write X —z’)(z’—X;)(z’—Xz’)(z’—XZ’)
o (=X (X5~ ¢) (16)
¢; = aml=sin \/(X:,f— X7 )(X;—Cl’) (12) so that we have another equation relating C{+ C; and
C{C;.

and add a subscript to the quantities in (10) to signify that At the point F of Figs. 1 and 2, we make use of [3, eq.
257.11], and write

2 _ ’ JAPY; 78l
= fx,;__fxg{ 2= (C[+C)) 2’ + €[ oo an
Y(Xi=2)(2 - X3)(2 - %3)(z - Xq)
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so that when z=2h+ jO, z/=y=XJ, then y=CJ gives and

z=2h+ jb. z=jb+2h w=—K+ju t=¢,. (20b)
We have from (17) So by (1c) we have
Xi (X 2?2 —(C{+ C3)z’ + C{Cy

=—P| =" ) (18)

g x\\(xi-2) (- x5)(2 - X3)(z' - X})

Then, proceeding as we have done from (7) to (13), we C,=sn(K + jv, k) =dn(v, k’). (20¢)
write ’
By [3, eq. 125.0], recalling cn K = 0 and dnK = k’, and by
2_ a’b’ (1c) again we have
7 ’ 4 4 ’
(a’+2)(b' + 1) C, = —dn(u, k). (20d)
o= XV Putting (20a) and (20b) into (5e)
X, b+
4 a_ 2K’ , cn(v, k')sn(v, k')
—= Z(v,k')— kv
., [a+w X[-C S 1+ vdn(», k%)
¢, =amU, = sin e
vy C-Xx/ (212)
X{<Xj<X{<y<X

DLy Sl Inla)
¢7.—_7r/2fory=X3’ K7=K(k7)=K3 l—pdn(u’k)

Then (18) gives (21b)
We thus have related prescribed parameters a’, b’, and #’
b=—gP [C{C{(U7 -K)-(c{+ Cz'){(a' +b+h) of Figs. 3 to the capacitor dimensions a, b, and A, since k

is then given by (5a) and » by (5b), while (20c) and (20d)

VD, a,, k,) will yield v and u.
From (21a) and (21b), we can find the ratio of plate
idths
——(a’+b’+h’)V1<E,a7,k2) W
2 20, k')— k'*ven(v, k’)sn(v, k')
+ XU - K+ { X2, - K) a_ Lrdale k)
b k’*ven(u, k’)sn(u, k)
z(u, k’)—
+2(a’+ b+ h') 1-»vdn(u,k’)
a where
X{V,(@1, 0, ky)—2(a’ + b + h’)Xl’Vl(——,a7, k3)
2 1 1
dn(u,k’)==——é— dn(v,k’)=+—C—
+ (' +a + b)YV (D, 0, k) 2 !
' 1 1
sn(u, k’)=71/|1-—=
—(h’+a’+b’)V2(‘I>7,a7,k3)}]. (19) ( ) k ( sz)
Now we have two equations (6b) and (16) to solve for , (1-k%C})
C{C; and C[+C}, one equation (15) to solve for the  (#, k") =) =———7=
constant P, and (13) and (19) determine the values a /A 2
and b/h completely. 1 1
sn(v, k') == (1———)
1V. CAPACITOR PLATE DIMENSIONS FROM THE k’ C?
SECOND INTEGRATION OF (1) —
Actually, (1) has been integrated by Love (1, eq. (5¢)], en(v, k') = M , O0<v<K,0<u<K’.
from which the dimensions of the capacitor of Fig. 1 can Ck’

be correctly determined as follows. . .
From Figs. 2 and 5, at points B and F, we have, According to [2, eq. (23)], we would have, instead of (21¢)

respectively, a a (krv+1)(v+1)

z=ja w=K+jv t=C, (20a) b p  (kv=1)(r-1)
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Fig. 6. The z’ parameters.

which is not true, as demonstrated by the numerical exam-
ple below.

For the prescribed a/h and b/h, we have theoretically
four equations ((5b), (5¢), (21a), and (21b)) to solve for
four parameters k, v, u, and v so that we have the required
k for (4a). Actually, it is difficult to solve these four
equations given only a/h and b/h, so it is expedient to
start with prescribed a’/h’ and b’/h’ approximately to
give the required ratio of a /b and to proceed further to get
the correct values of a/h and b/h.

Before we give the numerical example, we first transform
(5¢) into the following form by [3, eq. 140.01]:

_ 2kK {E(w)—K —-E w+cnwdnw}
T K’ snw + v

z=h

(21d)

so that we can make use of some good tables of elliptic
function with complex argument, such as [4]. By putting
the points B and F for w=K + jv for z= ja and w=
— K + ju for z=2h — jb, we find

a 2kK’ , , E,
Z__ T {(K _E)(K'—E’
b kK, E,
Z__ m {(K E)(K/__E/

so that when » — o0 as a — b, only one term remains on
the right-hand sides of (21e and f).

To demonstrate now that a/b has to be worked out,
ard not simply being given by a’/b’, we will work on the
example in Langton’s paper [2]. The z’ parameters are
prescribed in Fig. 6, so

a' =2

W=

b=4
and (5a) gives

k=0.475

and (5b) gives

v=09.

From (20c) and (20d), we find that

v =1.19043
u=1.25153
and then

Z(v, k') = 0.256141
Z(u, k') = 0.248735.
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Equations (21a) and (21b) give

= (.266003

=(.524377.

o x> n

Therefore
b
a

=1.97132

which is not 2 as was supposed by Langton [2]; moreover,
the ratios @ /h and b/h are far from 0.4 and 0.8, respec-
tively.

So we can see that we may start with a prescribed
dimension of the transformed dimensions such as those in
Fig. 6, and then work out k and v by (5a) and (5b), to be
inserted in 21(a) and (21b) to find a /A and b/h and then
a/b by (21c).

V. THE ELECTRIC INTENSITY DISTRIBUTION

For industrial heating applications and in antenna work,
we wish to know the electric-field intensity distribution
inside the capacitor and in its neighborhood. From the

_u_)_ . sn(v, k”)(en(o, k) (21¢)
K’ dm(v, k) {1-»vdn(v, k’)}
u ) ,»  sou,k)en(u, k) (219)
K’ dn(u, k" ){1—-vdn(u, k’)} :
complex potential W of (2), we have
aw _dw _oUu 9V _ 9V  .9U _ .
dz " dx ox ax T ax ey = T ETIE
(22a)
or
1
oWy R
E .+ JE,=— & d (22b)
dw

dz /dw is given by operating on Love’s result quoted in (5¢)
to obtain

gi__ 2_h(E/_k/y2K/) (Z_Cl)(t_CZ)
7 (t+1/)2

t=sn(w, k). (22c)

>

aw

Consequently, we can write

_U 1 (t+v)°

T 2hE k%K (1-C)(1 - Gy)
(23a)

for a potential difference of 2V, between the capacitor
plates of Fig. 1.
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Along the center line CE of Fig. 1, ¢ is real
-1<t<l.

For heating applications, we wish to obtain as nearly a
uniform electric-field intensity distribution as possible, so
we want the following four values of |E|=|— E, + jE | as
nearly equal as possible at 7 =1,0,—1 and at ¢ for which

dlE| _
g 0 (23b)
which gives
_ 2C,C,+v(C1+Gy) (230)
C,+C+2v

By (5b) and (5c), this is the same as
e (1+&*)p*-21
1+k2-2k%2 7’
At this value of ¢, the value |E|is a minimum

(23d)

. (V*-1)(k*v2-1)K’
4E'K'(1-V2)(1- KW+ VK2 (1-k?)
Uy = 1
h2KE yrg (1-k%)
4 B (V2 -1)(1- v?k?)

(24a)

To obtain a uniform field intensity along the center line
CE, we wish to make (24a) as nearly equal to |E| at
t = +1, 0 as possible, where, at ¢ = +1, we have

T
U 2KE’
t=-1: E|=—
= Lk (1=9)(1-vk?)
E’ (v+1)2
(24b)
and
w
U 2KE’
t=1: E)|=—
IE2l= %, K Q40K +1) (24e)
E/ (V—1)2

where C,C, and C; + C, are given by solving (5b) and (5¢),
s0 we obtain

a
U, 2KE’ 1-»*%K'/E’
|E1|=70 , 12 272 ,/ ’ (25a)
L K vk =1 1=K /E
E’ v—1 ‘
m
U VKE' 1-»%K’/E’
|E2|=70 ; on2 2 2,/ ; (250)
L K k241 1-v%°K /E

E v+l
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while for ¢ = 0, (23a) gives
kil
2
U KE'’ v?
t=0: E)|=-2
|Eol h 1-k**K’E’ C1C,
U
0T 1 (25¢)
h 2KE’ K’
1_.
 v2E’

We have found the field intensities at four points, C, E,
their midpoint, and another point given by (23d). By
choosing the appropriate k and v from their permissible
sets of k and v obtained from solutions of (5b), (5¢), and
(5d), we can obtain a nearly uniform field intensity distri-
bution along the whole CE of Fig. 1 or a better distribu-
tion over a portion of the line segment CE.

To study the electric-field intensity inside and outside

. the capacitor, we make use of the fact that the equipoten-

tials and the flux lines between the electrodes of Fig. 1
have been transformed into vertical and horizontal lines in
the uniform field in the w-plane of Fig. 5 and (2) and (5¢).
Thus, for U, =1V, we have

U(x, ») = ¢ (262)

1 K’
Vxy) =% (26b)
so that the total flux passing through a line joining any two
points in the field of Fig. 1 equals the product of the
permittivity e by the difference in the value of the stream
function ¥ at the two points [5]. The potential function IJ
representing the equipotentials and the stream function V
representing the lines of force are both straight lines, so for
V(x, y)=V,, (26b) gives

"

K’/K
and along this line of force V(x, y)=V;

I4

n=kK

w=§+j LK ’,
K'/K

On substituting this w into (5¢), we obtain an equation of a

line of force in Fig. 1 with £ as the parameter as £ changes
from — K to XK.

Since the completely symmetrical case of a=b in Fig. 1

has received more attention than the more general case, we

will give more details on this case in the following section.

(26¢)

VI. Ture SYMMETRICAL CASE OF A CAPACITOR OF

EQUAL PLATES

For the case a=»5 in Fig. 1, (21a) and (21b) are the
same provided » — o0. Then (5e) goes into

2K’h 7w
=h— Z + 27z
: | 2() 2KK,] (27a)
or
z=h-— 2§h [E(w)—KI;E w] (27b)
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from (21d) for v —» o0. From Fig. 4, w =K + jV, z= ja,
(27a) gives, by [3, eq. 143.01]

a_., 2K’ Z(u, k')~ k,zsn(v,k)cn(u,k)
h dn(v, k')

(28a)
while (27b) yields

a 2K’

, , E,(U,k) v
B

K’'—FE’ K’} (280)
by the known relations [3, eq. 110.10] [4, pt. IV])
E(K+ ju,k)=E(k)+ jE(v,k)
and
EK'+ E'K—-KK’'=7/2.
The values C; and C, of Fig. 4 will become

1 [ E’
C1=—C2=C=7€- I’ (28¢)
So the electric-field intensity will be given by (23a) as
U,
|E| = Z/Ez ; (284)
- k*—sn’o|
which has the minimum value
UO 77/2
ol == 28¢
' mml h KE’ ( )
for
t=sn(w,k)=0
and
| E min|
|By|=——5— (28)
1-k*K'/E
by (25a). Now the value of u or v in Fig. 4 is
sn(K + jv)=C
sO
Nl /K
dn(v, k') = C—-k Y (28g)

by (28c). With all this information, we can easily transform
the field in the w-plane (26a) and (26b) back to the z-plane
for a = b by means of (27a) or (27b). In Table I, given such
a transformation, we take (27b) and rewrite it as follows:

Z_ z—h
h h
_ 2K’ K'—E’ K'—E’
Er + JEi - —J
{ (& m)+ JEi(£,m) o T n}
_2K’E[Er(§m) K —-E' K¢
T E kK’ EK
+j2K'(K’—E’){Ei(£,n) _1}
aT K/_E/ K/
=X,
PR (29)
The quantities K, K’, E, E’, E/=Er(§,m)/E, Ei'=
Ei(£,m)/(K’— E’) can be read from [3, pt. IV]. An exam-

ple is shown in Fig. 7, indicating that the boundary line of
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TABLE I
Loci oF THE LINE OF FORCE

x/h .2696] .5066] .6497| .8232[ .9585] .9852 .997&\ .95921.0000

y/h 1.3867‘1.3462 1.2492|1.1186| .9771} .7161| .6480| .5868] .5506| .5386
n = 0.5K'

x/h L2967 .5309] .7218] .8533[ .9811]1.0025[1.0088]1.0063]1.0000

y/h|1.4433]1.4057]1.2996(1.1582|1.0056| .7473 .6560| .5917] .5539] .5412
n = 0.7K'

x/h L4717] .825301.0474)1.1531]1.1723]1.1392}1.0962|1.0489]1.0000

y/h{2.0201]1.9278}1.6930[1.4101 1 1427( .9769] .6376] .5585| .5134( .4988
n = 0.8K'

.9520(1.4964]1.6567|1.6267]1.4687]1.2967[1.1922]1.0943[1.0000

y 3 1208 2.8202[2-2036]1.5869(1.1471] .6520| .5238| .4465| .4020| .3881
n = 0.9"

x/n 0 2.9305]3.12032.6495 2.2124‘1.5300 1.4337 l.2711¢[1.1307 1.0000

y/h|6.336614.8182(2.353911.3107; .8067} .5419].3912 .2498| .22321 .2130
n = 0.1K'

x/h 0 L1243) .2323] 3443 .5147| .5407| .7430) .8312] .9162]1.0000

y/h] 1793 .1781} .1734| .1686| .1619| .1468| .1401| .1350] .1320| .1308
n = 0.2K'

x/y 0 J1306] .2439] .3600] .4696[ .66817 .7576] .8416] .9215[1.0000

/hi .3649] .3606| .3536] .3408{ .3249| .2913] .2770| .2657] .2584| .2559
n = 0.3K"

x/h 0 [0.1430f .2673 .3916“ .5054] L7012 ‘7848{ .8608] .9315]1.0000

y/hl .5649] .5594] .5438| .5201| .4911] .4199| .4059| .3859| .3737| .3700
n = 0.4K’

x/hl L1661 .3098) .4473 [.5678| .7571| .8300| .8924} .9478[1.0000

y/h| .7924| .7824) .7539| L7117 |.6615] .5607] .5193| .4885| .4692| .4628
n = 0.5K'

.0208] .3866[ .5428] .8171] .8460[ .9002[ .9405] .9723}1.0000

L/hll osqslx 0510]0.9986| 9923 .8355! .6717] .6085] .5621) .5340| .5245
Boundary line: 1 =V, V/K’=10.58324, k =sin20°, a /h = 0.5386.

force originating from the tip of one of the capacitor plates
and entering orthogonally onto the ground plane x = 0, for
the case of a/h = 0.5386 when k = sin20° = 0.34202, with
v/K’=0.5832. In this manner, we can construct the com-
plete families of the equipotentials and the lines of force in
the transverse section of the two-dimensional capacitor.

In Table II, we tabulate some of the important data of
the symmetrical parallel-plate capacitor: 1/C, which ap-
pears in (28d); the field |E| is more uniform the smaller
1/C is in the neighborhood of w=10. This is the useful
region for industrial heating applications. » /K ’: the value
of total flux bounded by the stream function through the
tip of the plate of the capacitor, this is the fraction of the
total flux under one half of the capacitor plate, so 1—v/k’
is the amount of flux originating from the upper side plate.
z,/h is the height where the boundary line of force meets
the ground plane: it is a measure of the degree of confine-
ment of the field by the capacitor plates, and its value is
found by putting w = 0+ jv into (27a) or (27b)

z—h _2K’ _ k”n(v, k")sn(v, k’
dn(v, k')

(30a)
by [3, eq. 143.01], or

2K’

2= [(K’ ) B, v)—%}]\ (30b)

by [4, pt. IV]. The last two columns are from (28¢) and
(28f) to show the uniformity of the field intensity in the
neighborhood of the midpoint of the inner side of the
plate.
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Fig. 7. A field line plot, a = b.

TABLE II ‘
SYMMETRICAL PARALLEL-PLATE CAPACITOR OF EQUAL WIDTH

dh(v,k')
=1/c

. zy/h I s (B | B
(28a,b) | (30a,b) |(ratio) |(28e) | (28f)
2.1320 | 3.004 | 1.4090 |.99917] 1.00083
1.2069 | 2.065T | 1.7111 |.98561| 1.01478
.8862 | 1.7105 | 1.9301 |.95412| 1.05325
L6769 | 1.4849 | 2.1936 - |.91312} 1.103154
.5386 | 1.3807 | 2.5035 |.81908| 1.109812
L4300 | 1.3168 | 3.0624 | |
3205 | . 1.2558 | 3.9185 [.76942] 1.38679
22753 | 1.1889 | 4.3180 | |
1
1
1
1

stn Ltk a/h

| (28¢)
1° |
s° |
10° |
15° |
20° |

| (28¢8)
0406713 7322
.169544 | L6674
.302355 | .6285
+415047 | .6006
.511826 | .5832
+595245 | .5723
667215 | .5604

]
|
!
!
|
|
|
i
2729264 | .5452 |
!
|
!
J
!
!
|
|
!
|
|
!

782670 | .5361
.828473 | .
867543 |
.900592 |
928204 1.
950852 |
968909 |
.982659 |
1992346 |
+99809%4 |
.999924 |

22200 | 1.1478 | 5.2171 |.72924] 1.88225
21717 | 1.1137 | 6.4867 | |
.1233 | 1.0848 | 8.8000 [.58252] 2.35486
.09111] 1.0643 |11.6810 | |

| I

.5219
+5164
.5118
.5076
+5054
+5029
+5023
+5000
+5000

|.49636] 3.885512

|

| |.41159| 6.72363
| ! |

! | .31954]20.94413
| | -26216|68.8443

| | .18400}1210.53
l

|
|
|
|
!
|
| | |

VIL

Conformal transformations are very powerful tools for
solving two-dimensional boundary value problems thanks
to the availability of modern computers, because good
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tables of mathematical functions can be obtained to facili-
tate the numerical computation of results valuable for
practical applications. Classical problems having a history
of many years may find new applications and, therefore,
deserve our critical study. Langton [2] endeavors to give a
complete solution for a capacitor with symmetrically placed
plates of finite unequal breadths. Good results have been
achieved by Langton, but his solution is still not complete.
He stated that equation (1) of his paper cannot be in-
tegrated; actually, it can be done by formulas in Byrd and
Friedman’s celebrated Handbook [3). Langton misrepre-
sents the property of conformal mapping by his equation
(23). This equation should be replaced by (21a), (21b), and
(21c) of this paper. The statement that values of elliptic
integrals for complex arguments have not been tabulated is
not true; we use one of the tables in [4] to calculate the

“whole field distribution of the symmetrical parallel-plate

capacitor of equal plates (Fig. 7 of this paper). We will give
more numerical results for practical application in subse-
quent work, as this classical problem of the parallel-plate
capacitor forms the background to -modern microstrip an-
tennas in theory and practice [6].
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